中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (6): 94-103.doi: 10.3969/j.issn.1674 1579.2023.06.010

• 论文与报告 • 上一篇    下一篇

融合多尺度及注意力机制的表面缺陷检测算法

  

  1. 山东兖矿智能制造有限公司
  • 出版日期:2023-12-25 发布日期:2024-01-09
  • 基金资助:
    国家重点研发计划项目(2021YFB3301300)、江苏省高等学校自然科学研究面上项目(21KJB520007)、国家自然科学基金(62203213)和江苏省自然科学基金(BK20220332)

The Surface Defect Detection Algorithm Based on Multi-Scale Feature Fusion and Attention Mechanism

  • Online:2023-12-25 Published:2024-01-09

摘要: 发动机的叶轮叶片是空间航天器推进系统的关键组件,对空间任务的顺利完成起到至关重要的作用.叶轮叶片表面缺陷具有尺寸小、种类多等特点,容易造成误检和漏检.提出一种融合多尺度特征及注意力机制的缺陷检测算法(EF centerNet),采用轻量级的EPSANet网络作为CenterNet算法的主干,有效融合PSA分割注意力机制,关注更重要的缺陷特征,增强网络的特征提取能力;同时在主干特征提取网络输出的特征层后添加FPN结构,进一步融合多尺度信息,即低分辨率的高层语义信息和高分辨率的低层特征信息,从而提升算法的缺陷检测精度.实验结果表明,所提出的EF CenterNet算法在自制数据集上检测精度达到96.74%,比基线CenterNet算法指标提升了1.81%,在公共数据集上检测精度达到77.37%,比基线CenterNet算法指标提升了1.99%.

关键词: 叶轮叶片, 缺陷检测, 注意力机制, 多尺度, 深度学习

Abstract: The impeller blades of the engine are a key component of the propulsion system of a space spacecraft and play an important role in the success and efficiency of space missions. In order to solve the above problems, this paper proposes a defect detection algorithm (EF CenterNet) that integrates multi-scale features and attention mechanism, and uses the lightweight EPSANet network as the backbone of the CenterNet algorithm to effectively integrate the PSA segmentation attention mechanism, pay attention to more important defect features, and enhance the feature extraction ability of the network. At the same time, the FPN structure is added after the feature layer output by the backbone feature extraction network to further integrate multi scale information, that is, low resolution high level semantic information and high resolution low level feature information, so as to improve the defect detection accuracy of the algorithm. Experimental results show that the proposed EF CenterNet algorithm achieves an average accuracy of 96.74% in the self made dataset, which is 1.81% higher than that of the baseline CenterNet algorithm, and an average accuracy of 77.37% in the public dataset.

Key words: impeller blade, defect detection, attention mechanism, multi scale, deep learning

中图分类号: 

  • TP39