中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (6): 86-93.doi: 10.3969/j.issn.1674 1579.2023.06.009

• 论文与报告 • 上一篇    下一篇

基于自监督学习的动力设备异常检测方法

  

  1. 北京航空航天大学自动化科学与电气工程学院
  • 出版日期:2023-12-25 发布日期:2024-01-08
  • 基金资助:
    国家自然科学基金资助项目(61972016、62032016和92067204)和北京市科技新星资助项目(20220484106和20230484451)

Anomaly Detection Method for Power Equipment Based on Self Supervised Learning

  • Online:2023-12-25 Published:2024-01-08

摘要: 高效且准确的对动力设备进行异常检测对于航空航天安全至关重要,科学的检测和维护可以及时发现潜在故障,保障系统的安全性与可靠性.传感器采集到的动力设备数据蕴含着关键价值信息,处理这些数据时通常先要进行特征提取.虽然深度学习方法由于大量的数据学习而获得了很好的结果,但对于传感器的数据处理却陷入了微调现有网络或从头设计模型的两难境地.提出基于自监督学习的时序数据时空特征提取网络.引入了自监督学习的方法来预训练网络.提出一种新的网络模型结构,该结构可以有效提取时序数据的时空表征.最后在相关数据集上对所提出的方法进行验证,实验结果证明所提方法的有效性.

关键词: 动力设备, 时序数据, 自监督学习, 异常检测

Abstract: Efficient and accurate anomaly detection of power equipment is essential for aerospace safety. Scientific detection and maintenance can promptly identify potential faults and ensure the safety and reliability of the system. The data collected by sensors from power equipment contains valuable information. Feature extraction is usually required for processing these data. Although deep learning methods historically obtain excellent results, there is always a trade off between fine tuning existing networks or designing models from scratch for sensor data processing. To address this issue, we propose a temporal feature extraction network for time series data based on self supervised learning. First, we use self supervised learning methods to pre train the network. Then we devise a novel network model structure that can effectively extract the representation of time series data. Finally, we evaluate the proposed method on relevant datasets, and the experimental results demonstrate the effectiveness of the proposed method.

Key words: power equipment, anomaly detection, self supervised learning, series data

中图分类号: 

  • V231