中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (4): 50-58.doi: 10.3969/j.issn.1674 1579.2023.04.006

• 论文与报告 • 上一篇    下一篇

基于联邦学习的卫星编队故障诊断

  

  1. 天津大学电气自动化与信息工程学院
  • 出版日期:2023-08-26 发布日期:2023-09-19
  • 基金资助:
    国家自然科学基金资助项目(62003236、62073234和62022060)和空间智能控制科学技术实验室基金(HTKJ2021KL502015)

Satellite Fault Diagnosis Method Based on Federated Learning

  • Online:2023-08-26 Published:2023-09-19

摘要: 针对卫星编队中单颗小卫星欠配置、测量信息不全和故障类型数据少等问题,提出一种基于联邦学习的卫星编队故障诊断方法. 基于故障影响下的卫星动力学模型,利用Unity3D引擎搭建虚拟仿真环境,为后续卫星故障注入及故障数据产生奠定基础. 考虑单个小卫星测量配置不全的问题,采用双向协调网络(BicNet)构建卫星本地故障诊断模型,借鉴邻居卫星的“远端”敏感器信息,实现本地卫星故障诊断.采用联邦学习框架进行分布式训练,每颗卫星上传本地模型参数进行协同建模,在不增加通信压力的情况下,整合整个星群的故障特征,提高星群对不同故障类型的故障诊断能力. 所设计的编队故障诊断算法在编队卫星数量变化时也无需重新训练诊断网络,满足“即插即用”的工程需求.通过仿真实例验证,在测试集上精度达到99%,表明该方法有较高的准确性.

关键词:  , 联邦学习, 故障诊断, 卫星编队, 强化学习

Abstract: A satellite fault diagnosis approach based on federated learning is proposed to address issues such as single satellite under configuration and incomplete measurement information. Firstly, a fault model for satellites is established, and fault data is generated via the unity simulation environment. Then, a Bidirectional Coordination Network (BicNet) is used to construct local training models, which considers neighboring satellite fault information for decision making. The diagnostic network does not need to be retrained when the number of formation satellites changes, enabling plug and play. Finally, a federated learning framework is used for distributed training, integrating fault features of the entire satellite group without increasing communication pressure. Each satellite uploads local model parameters for collaborative modeling, improving the fault diagnosis capability for different fault types of satellite group and completing the fault diagnosis. Simulation results demonstrate high accuracy of 99% on the test set, indicating the effectivenessw of proposed method.

Key words: federated learning, fault diagnosis, satellite formation, reinforcement learning

中图分类号: 

  • TP183