中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (1): 40-52.doi: 10.3969/j.issn.1674 1579.2023.01.005

• 论文与报告 • 上一篇    下一篇

全状态约束切换系统的自适应神经网络控制

  

  1. 西南石油大学 
  • 出版日期:2023-02-26 发布日期:2023-03-20
  • 基金资助:
    国家重点研发项目(2019YFC0312303 05)

Adaptive Neural Network Control for Switched Systems with Full State Constraints


  • Online:2023-02-26 Published:2023-03-20

摘要: 为了解决非线性约束切换系统的控制问题,针对一类具有非对称时变全状态约束、状态不完全可测以及未知外部干扰的切换严格反馈非线性系统进行研究,引入状态观测器、自适应神经网络和动态表面控制技术,设计了一种基于径向基函数(RBF)神经网络的自适应输出反馈控制方法.通过采用非对称时变障碍李亚普洛夫函数(barrier lyapunov function,BLF)使系统的全部状态满足非对称时变约束条件,而Lyapunov方法和平均驻留时间理论则保证了闭环系统所有信号是半全局一致最终有界.最后,在所提控制律的作用下,输出跟踪误差可以减小到任意小,2个仿真实验结果也验证了所提控制算法的有效性.

关键词: 动态面控制, 全状态约束, 非线性切换系统, 神经网络状态观测器

Abstract: In order to solve the control problem of switched nonlinear systems with nonlinear constraints, a class of switched strict feedback nonlinear systems with asymmetric time varying full state constraints, incomplete state measuability and unknown external disturbances are studied in this paper. State observer, adaptive neural network and dynamic surface control techniques are introduced. An adaptive output feedback control method based on RBF(radial basis function) neural network is designed. By adopting the asymmetric time varying BLF(barrier lyapunov function), all states of the system meet the asymmetric time varying constraints. The Lyapunov method and the average dwell time theory guarantee that all signals in a closed loop system are semi globally consistent and eventually bounded. Finally, under the action of the proposed control law, the output tracking error can be reduced to an arbitrarily small value, and two simulation results also verify the effectiveness of the proposed control algorithm.

Key words: dynamic surface control, full state constrains, nonlinear switched systems, neural network state observer

中图分类号: 

  • TP273